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Transonic potential flow around the leading edge of a thin two-dimensional general 
airfoil with a parabolic nose is analysed. Asymptotic expansions of the velocity 
potential function are constructed at a fixed transonic similarity parameter (K)  in 
terms of the thickness ratio of the airfoil in an outer region around the airfoil and in 
an inner region near the nose. These expansions are matched asymptotically. The 
outer expansion consists of the transonic small-disturbance theory and i t  second- 
order problem, where the leading-edge singularity appears. The inner expansion 
accounts for the flow around the nose, where a stagnation point exists. Analytical 
expressions are given for the first terms of the inner and outer asymptotic 
expansions. A boundary value problem is formulated in the inner region for the 
solution of a uniform sonic flow about an infinite two-dimensional parabola a t  zero 
angle of attack, with a symmetric far-field approximation, and with no circulation 
around it. The numerical solution of the flow in the inner region results in the 
symmetric pressure distribution on the parabolic nose. Using the outer small- 
disturbance solution and the nose solution a uniformly valid pressure distribution on 
the entire airfoil surface can be derived. I n  the leading terms, the flow around the 
nose is symmetric and the stagnation point is located at the leading edge for every 
transonic Mach number of the oncoming flow and shape and small angle of attack of 
the airfoil. The pressure distribution on the upper and lower surfaces of the airfoil is 
symmetric near the edge point, and asymmetric deviations increase and become 
significant only when the distance from the leading edge of the airfoil increases 
beyond the inner region. Good agreement is found in the leading-edge region between 
the present solution and numerical solutions of the full potential-flow equations and 
the Euler equations. 

1. Introduction 
Transonic potential flow about the leading edge of a round-nosed thin airfoil is a 

complicated mathematical problem that also causes many difficulties in the 
numerical calculation of the flow around the entire airfoil (Jameson 1985). An 
approximation of the velocity potential function of the flow by the transonic small- 
disturbance theory predicts infinite velocities and pressures near the leading edge of 
the airfoil. This is known as the transonic ‘nose singularity’ (Keyfitz, Melnik & 
Grossman 1978; Cole & Cook 1986). Actually the flow in this region is brought 
continuously to a stagnation point near the leading edge. Also, comparisons between 
solutions of the transonic small-disturbance equations and the full potential-flow 
equations for two-dimensional airfoils (Albone et al. 1974; Keyfitz et al. 1978) 
indicated relatively large discrepancies in the nose region of the airfoil. This failure 
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of the small-disturbance theory is due to the large perturbations to the free stream 
flow that occur in the leading-edge region. The flow has to be calculated by a more 
exact theory. A matching between a solution of a compressible stagnation flow 
around the nose of the airfoil and the transonic small-disturbance theory around the 
rest of the airfoil may explain the basic character of the flow in the leading-edge 
region, and be helpful in the numerical calculations of transonic flows about thin 
airfoils. 

The transonic nose singularity that appears in the small-disturbance theory of an 
airfoil with a parabolic nose was first studied by Nonweiler (1958) and Guderley 
(1962) and later by Keyfitz et al. (1978) and Cole & Cook (1986). The Nonweiler (1958) 
and Guderley (1962) analyses are limited to the case of a symmetric flow around a 
slender nose. The first consistent analysis of the problem was given by Keyfitz et al. 
(1978) who described the small-disturbance flow around the leading edge by an 
asymptotic series of similarity terms. They were determined by a set of boundary 
value problems and were solved numerically. It was found that the flow is dominated 
by the thickness effects, where the leading term corresponds to a sonic symmetric 
flow over a slender parabola at zero incidence. Higher-order terms were described as 
regular perturbations to the leading term and consisted of either eigenfunction 
solutions to the problem or of solutions that represent the effects of profile geometry, 
free-stream speed and local incidence at the nose. It was shown that in the general 
case, the next possible term after the leading symmetric term corresponds t o  an 
eigenfunction that represents an antisymmetric flow around the nose, with an 
eigenvalue exponent that is very close to the leading-term exponent. Good agreement 
was found near the nose between the series solution and fully converged numerical 
solutions of the transonic small-disturbance equation. 

On the other hand, Cole & Cook (1986) approximated the dominant term of the 
perturbation velocity potential near the nose by hodograph similarity solutions of 
the sonic small-disturbance problem. It was assumed that the hodograph singular 
solution near the nose is composed of two symmetric and unsymmetric terms of the 
same leading order, to represent both the thickness and the circulation effects around 
the nose, as in the case of a subsonic lifting airfoil (Rusak 1990). However, as will be 
shown later in the present paper, this solution is inconsistent with the tangency 
boundary condition on the parabolic nose, unless the unsymmetric term is cancelled. 
I t  means that the dominant term of the transonic nose singularity is symmetric, and 
unsymmetric (circulation) effects may be represented only by higher-order terms, as 
was also found by Keyfitz et al. (1978). This result is specifically important when the 
stagnation flow in an inner region near the parabolic nose of the airfoil is analysed. 
It results in a dominant symmetric solution in the inner region, where the stagnation 
point is located at  the leading edge. 

Kusunose (1979) analysed the inner flow around the nose. Asymptotic expansions 
of the velocity potential function were constructed in terms of the thickness ratio in 
an outer region around the leading edge of the airfoil and in an inner region near the 
nose, and were matched. However, this analysis was based on the inconsistent 
solution of Cole & Cook (1986). Also, the asymptotic expansions in this analysis are 
incomplete and the numerical calculations of the flow in the inner region are 
inconsistent with the results that were found from the matching process. 

Despite being an important problem, both theoretically and numerically, the 
analysis of the transonic potential flow around the leading edge of a thin round-nosed 
airfoil was never completed. It is expected to be a more complicated problem than 
the analogous one in the subsonic case, which was recently presented by Rusak 
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(1990). Both in the outer and inner regions the equations are governed by nonlinear 
effects, and there are no known solutions to either of these equations. Therefore, 
asymptotic expansions are used to approximate the solution in the outer region 
around the leading edge and in the inner region around the parabolic nose. 

This paper presents a consistent analysis of the problem. Analytical expressions 
are given for the first terms of the inner and outer asymptotic expansions and are 
matched. A uniformly valid pressure distribution on the entire airfoil is obtained. In 
the leading terms the flow around the nose is symmetric, and to the orders discussed 
the stagnation point is located at the leading edge for every transonic Mach number 
of the oncoming flow, for all shapes with a small angle of attack of the airfoil. 
Asymmetric deviations become significant only when the distance from the leading 
edge of the airfoil increases beyond the inner region. This special character of the 
transonic flow about a thin airfoil with a parabolic nose is in direct contrast to the 
subsonic case, where both symmetric and circulation effects are of the same order in 
the leading terms, and where the stagnation point shifts along the airfoil's nose due 
to the circulation around the airfoil (Rusak 1990; Cole 1991). The present solution 
of the transonic flow around the leading edge of a round-nosed thin airfoil shows good 
agreement with numerical solutions of the full potential flow equations and the Euler 
equations. 

2. Basic problem and equations 
A transonic potential flow about a two-dimensional thin airfoil with a parabolic 

nose is considered in an (2, y)-plane with unit vectors (ez, e,) (figure 1).  The airfoil 
shape is given by 

where c is the airfoil chord and 6 is the thickness ratio, 6 4 1. The functions F,,,(s) 
represent the upper and lower surfaces, respectively. These shape functions are 
described by 

where C, (x )  is the camber line function, A = 8/6,0 is the angle of attack and ct(x/c) 
is the thickness distribution function. Also, t(0) = t(1) = 0 and C,(O) = C,(c) = 0. 
Near the leading edge as x+O the thickness function changes like ct(x/c) - 
2h(cx)i+O(s) and the camber function changes like G,(x) - a,s+O(fl)  with (q > l),  
where R, = 2h2S2c is the radius of curvature of the parabolic nose, and a, is the local 
camber of the airfoil at  the leading edge (see Abbott & Doenhoff 1959, pp. 111-1 18). 

To the orders considered the flow is irrotational and isentropic. The velocity- 
potential field @ of the flow, where q = V@ is the velocity vector, is described by the 
full potential-flow equation : 

B(x,y) = ~--CYF~,~(X) = 0 for 0 < s < c, (1) 

F,,l(x) = C,(z)-Azfct(x/c) for 0 < x d c, (2) 

where U, a,, M ,  are the speed of the flow, speed of sound and Mach number of the 
flow at upstream infinity, respectively, a is the local speed of sound, and y is the ratio 
of specific heats. The solution of (3) is sought that satisfies the tangency boundary 
condition on the airfoil surface, 

V@.VB = 0 on l3 = 0. (4) 
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m y )  = Y-aF",,(x) = 0 
V@.VB= 0 on B =  0 R, = (2h2&) 

Ue,, Kutta condition - 
___) 

P a  P m  

a m ,  M ,  N I 

FIGURE 1. Airfoil problem. 

Also, disturbances must die out a t  upstream infinity. As x -+ - co : (cPZ -+ U,  c#ju -+ 0). 
The Kutta condition is satisfied at a sharp subsonic trailing edge. In order to get a 
one-valued potential function the (x, y)-plane is considered as cut along the 
slipstream that leaves the trailing edge to infinity, where the potential is allowed to 
jump due to the circulation around the airfoil (figure 1). The density ( p )  and pressure 
( p )  fields of the flow are calculated as function of the velocity q by the isentropic 
relations and the conditions at  upstream infinity (pm,p,, q = Ue,) : 

In order to study the transonic flow around the leading edge of a thin airfoil with 
a parabolic nose, the potential function c#j is approximated by asymptotic expansions 
in the limit (8+O,M,-+l) and with the transonic similarity parameter K = 

(1  -Mk)/($Mm) fixed. An outer expansion is constructed in an outer region around 
the airfoil. There the coordinates (x, tJ = &y) are fixed as 8-+ 0. An inner expansion 
is constructed in the nose region using stretched coordinates. There (x* = x / S 2 ,  y* = 
y/P) are fixed as S+O. 

3. Outer expansion 

@ is given in the limit (8+O,M,+ l ) ,  where 
In the outer region, around the airfoil, the asymptotic expansion of the potential 

1/w, = l+K$+ ... 

@(x, y ;Jf, ,A, 4 = wx+ &q., y";KA)  + &52@, % ; K A )  +OW)) ) ,  

and ( x , % ; K , A )  fixed, in the form: 

(6) 
where s(S) < $. From the basic system of equations (1)-(5) a sequence of outer 
problems is found for the solution of the functions and &. The transonic small- 
disturbance problem for g51 is given by Cole & Cook (1986): 

(Y + 1) $lZ 41,, - A m  = K L 7  ( 7 4  
&(x, O f )  = Fu,,(x) for 0 < x 6 c, (7 h )  

($lZ,$lg)+o as x+--OO, ( 7 c )  
( 7 d )  

q51(x, 0+) -$l(x, 0-) = T for x 2 c, (7 e) 

$l,(C> O+) - $lZ(C, 0-1 = 0 
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FIGURE 2. Transonic small-disturbance problem. 

where I' is the circulation around the airfoil (figure 2). Shock compression jump 
conditions should also be satisfied on any shock waves that arise from the solution. 
The second-order problem for q52 is 

(K--(Y+l)$l,)+,,,+$,,~-(Y+l)$,,,+,, 

= -K$,,,+%y+ 1)9~,~1,,+291,91,,+(Y-1)$,,91,,, (8a )  
q52f7(x, O +  ) = +ls(x, 0-t ) FL,,(x) for 0 < 5 < c, (86)  

($2,,92,)'0 as x+--Go. (8c)  

(9) 

The pressure coefficient is given by 

cp  = (p-pm)/ ( ;pm V )  = -2&,,+U(&. 

(Y+ 1 )  dl - (Y+ 1)  9 l h +  (Y+ 1 )  91, + . . .) 
where (Y+ 1 ) 9 l h  = O"f(51, (Y+ 1)  91P = y"afp(5), 5 = z/g&, a > m, ( l o b )  

The solution of (7)  in the nose region (as x+0) is approximated by sum of 
similarity solutions, 

and where k ,  m, a are constants andf,f, are similarity functions. From (7a)  and (10) 
it is found that in the leading term the flow is near sonic and the effect of the term 
(Kq51,,) is smaller than the effect of the left-hand side terms in (7a ) .  Therefore, m = 
3k - 2 and f(5) is described by the nonlinear differential equation 

(ft - k 2 [ 2 ) f g  - 5k(  1 - k )  [ft + 3( 1 - k )  (3k - 2 ) f  = 0. 

f ( 6 )  - b, E3-'/lC + b 53-3/k + ... 

( 1 1 )  

The approximation of the function f ( 5 )  as a power series as g+O+ and x > 0 (as 

(12) 
5++a) by 

1 

results, from the boundary condition for 
( y+  1 )  hci (Cole & Cook 1986). Therefore, 

(equation ( 7 b ) ) ,  in E = $ and b, = 

(Y+ 1 )  A h  - @f(5)+ ..., 6 = (13a)  

where from (1 1) Cf,-%S,f,-%fg+%f = 0. (13b) 
Using ( 1 3 4  and hodograph similarity solutions, Cole & Cook (1986) found that the 

singular solution g near the nose can be given by 

(14) 
g = c,pfF(sina) ,  

F(s in  a) = c2( 1 --: sin2 a) +sin cLF($, -+ ; $; sin2 a), 
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where c1 and c2 are constants to be determined, F is the standard hypergeometric 
function (Bateman 1953), and 9 is the solution of the hodograph-hypergeometric 
equation, given in its self-adjoint form by 

cos2aF”--Qsina%‘+hB = 0, 9’ = dF/d(sina)  (15) 

with h = y. Also, in (14), 

(16) I p2 = 2 r 2 - 4  3 
@ ?  

0 = (Y + 1)  4 l h Z  = ?7-!f&), 
2, = (Y+ W l h g  = ~-%f(O-%&m 
sina = w/p. 

The solution in (14) is given by a linear combination of symmetric and 
unsymmetric functions, in terms of the hodograph similarity variable, sin a. The 
parameter a is determined in the range a, < a < a3, where a1 < 0, a2 and as > 0 are 
the first three roots around a = 0 of the equation g = 0 or g ( s i n a )  = 0. In the 
hodograph plane the lines a = a1 and a = a3 represent the boundary curves of the 
lower and upper surfaces of the airfoil ( y ” + O + ,  x > 0) as x+O. The third 
(intermediate) solution a = a, of F(s ina)  = 0 (a1 < a, < as) represents the x-axis 
ahead of the airfoil. The three roots al, a2, a3 are functions of the constant c2 only. 

Based on (14) Cole & Cook (1986) believed that to the same leading term the first 
term of the function 9 corresponds to unsymmetric flow around the nose due to 
circulation, where c ,  is an undetermined circulation parameter as in the case of a 
subsonic lifting airfoil (Rusak 1990). The second term of the function F corresponds 
to the basic symmetric effect of the parabolic nose. This concept was suggested by 
Cole & Cook (1986) to calculate hodograph-plane solutions of transonic flows around 
airfoils, where the solution in ( 14) represented the far-field nose singularity. 

From the transformation relations between the transonic physical plane (x, 8)  and 
the hodograph plane (p, a) (Cole & Cook 1986; Miiller & Matschat 1964) : 

where the phase-plane variables ( t ,  a) are defined by 

w = (x/y”)“, w = (x/?7)3 a, (17c) 

( 1 8 4  x = -1 ,(&, 3 p-2 CO$&’, 

2 = l/cos2a, W = 3F/(s ina9’) .  (18b) 

it is found that 

From (13a), (14) and (18a) the physical similarity variable (6)  can be given in terms 
of the hodograph similarity variable (sin a) by 

From (176) and (18b) 
= - t (D~c~(cos~.F’)) /9~.  (19) 

‘1 (20) 
t = -%w“(Z- 1) = -(29=/cosa97)2, 

a = (+)~w(z-  i ) 2  = - f ( ~ ~ / c o s a 9 ’ ) 3 t a n a ,  J 
and from (16), (17), (19) and (20) the similarity functionf(E) can also be determined 
in terms of sina by 

(21) f =  fF(a+$t) = &;(14.%-*15 sina+9g’cos2a/F:). 
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1 2  2 
Also, it is found that 

and from (13b) ,  (19), (21) and (22n)  

f* = 6 2 t  = - ($c'1 cosaaF-3 

Equations (19) ,  (21)  and (22)  define a parametric representation of the first-order 
physical similarity solution f (c)  in terms of the hodograph similarity variable sin a, 
where a changes in the range al(cz) < a < a3(c2). 

The substitution of (19) ,  (21)  and (22)  in (16) results in the velocity perturbations 
in the leading-edge region 

w = - ( Z ) %  Cf g-S@ cosi a + . . . , I  
J 2, = c f Y " - ? r 3  747sina+ ... . 

As y"+O+ and x > 0 (as [ + X I )  then c ~ - + a ~ , ~ ( c ~ ) .  From (7b) ,  (19) and (23)  

Therefore, 

= ( y + l ) h ( E r +  ... 

The calculation of ( - F')a+a,, (Appendix A) shows that 

c1 = 2($($- l/sin2a),,,l,8(C2) ( y+  1)2h2c. (26) 

Since al(c,) + -a3(c2) for any c2 + 0 and the solution has to be continuous across the 
(x < 0) axis as jj -+ 0 k , it  is found that the tangency boundary condition ( (7  b)  or (24)) 
can be satisfied consistently if and only if: 

c2 = 0. (27 1 
This means that the unsymmetric term in the singular solution Q in (14)  must be 
cancelled, unlike the concept suggested by Cole & Cook (1986). I n  (19) ,  (21)  and (22 ) ;  

B(s ina)  = sinaF(g, - i ; i ;s in2a)  (28) 

and -a3 < a 6 a,, where a3 is the first root of the equation I"($, -&; g ;  sin2 a)  = 0, 
a3 = 80,4087792226". Also, a2 = 0 represents the (--2)-axis ahead of the nose, and 
when a > 0 then y" > 0, and vice versa. Equations (13a) ,  (21) ,  (23) ,  (28) and (A 2) 
show that in the leading term the transonic flow field around the parabolic nose is 
symmetric about the x-axis where: 
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r/4 &/4 
FIGURE 3. (a) First-order similarity function f(5). (b) Second-order similarity function f,(&). 

and where, from ( 2 5 )  and (27) ,  

c1 = 2(~)~(~--1 /s in2a3)  ( y+  1 ) 2 h 2 ~  = 2.2797(y+1)'h2c. (30) 
It is clear that  - J ,  -a) = q51(J,a), w( -g ,  -a) = o(J,a) and v( - J ,  -a) = 
-v(jj,a) for any ( 8 , ~ ) .  The variation of the function ( f / c i )  with (LJck) is shown in 
figure 3 (a) .  It is a monotonically decreasing function, with a relatively steep gradient 
about 6 = 0. The function f ( E )  can be approximated from (12), (19)  and (21)  by 

( 3 1 4  f([) - - (2): cod a3(y + 1); h%@ + ( y  + 1) h&-~ + . . . 
as <++a and by 

as [+ - co. It should be mentioned that the numerical solution of Keyfitz et al. (1978) 
for the function f ( [ )  coincides with the analytical parametric representation of this 
function, given by (29) and (30). 

With the dominant term in dl being symmetric, it is expected that unsymmetric 
(circulation) effects may be represented by second-order terms in (10). The 
substitution of (10) and (13a)  into ( 7 a )  results in two possible cases for the solution 
of the constant a and the function fp : 

( f [ - W ) f p ( ( +  (f((+W--?) C)fpt-a(a- l)f, = 0 ( 3 2 4  
when 4 < a < $, or 

when a = +. 
Equation ( 3 2 a )  is an homogeneous linear equation for fp while (326)  is a forced 

equation. Since the solution for f ( 6 )  is determined in (i9),  (29) and (30) in terms of 
sin a, (32 a )  is transformed into an equivalent equation for fp in terms of sin a : 

( f s - % C 2 ) f p t g +  (ftt-&C)&+&fp = Kfg (32h) 
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wheref; = df,/d(sina). A detailed derivation of (33) is given in Appendix B. It is 
interesting to notice that the assumption 

fp = g(sina)8-a(sina) (34) 

cos2ag”-~sinccg’+%j%x(a-~)g = 0, g’ = dg/d(sina). (35) 

results, together with (M), in the linear equation for the function g(sin a)  : 

Equation (35) has the same form as the hodograph-hypergeometric equation for the 
function F(s ina)  (equation (15)), but with a different constant A. Introducing x = 
sin2 a, (35) takes the form of the standard hodograph-hypergeometric equation (Cole 
& Cook 1986) : 

(36a)  

with h = +(u-f) .  (36b)  

h 
z( 1 - z )  g,, + (t - $2) g, + 4 g = 0, 

Comparing with the standard form of the hypergeometric equation (Bateman 
1953), the general family of linearly independent solutions of (36) is given by 

9 = dl9,+d292, (37a) 
where d,, d, are constants to be determined and 

6 l-a“,l 
6 ’ 6 ’ 2 ’  

where again P is an hypergeometric function and 6 = 7u. Therefore, the solution of 
(32b) is given in terms of sina by (34) and (37): 

fp = [dlgl(sina)+d,g,(sina)]iF-~~7(sina), (38) 
where F is described by (28). The calculation of the second-order term of the vertical 
component of the velocity perturbation gives 

vp = (Y+ 1)  A p Q  = y”a-l(afp-%-fp[) 

3 s  
= 8”-“ a ~ - ” ( d , g l + d , g , ) + y ~  w a + l ) ( m d 1  9; + a 2  9;) --u9-/(d1 9, +a, g a ) ) ] ,  

(39) 
where S is given by (22b). As y”-.O+ and x > 0 then c++ 00 and a++a,. From 
(13u), (19), (226) and (39) vp is approximated then by 

vp(z, o ) = - x(8--7)/61($ ci c 0 8  Oc311--6/7 ( - ~ ) i ; ( 6 / 6 ) ( d ,  9; + d, 9;) a++a,* (40) 

The boundary condition ( 7 b )  and the basic assumptions about the airfoil shape 
result as y”-O+ and x > 0 in either vp = constant or up = 0. When up = constant, 
a = 1 results and therefore it is necessary to consider first the case a = 

(equation (32)). However, when up = 0, (40) gives 

(dl 9; + d2 9;)a=*a, = 0, (41 a )  

where from Bateman (1953, p. 102, equations (20) and (22)) it is found that 

3+d 4-6 1 g ; = p  ~ - 
6 ’ 6 ’5’ ( a”(1-6) 

9; =7 
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A numerical calculation of gi and gi at 1.1 = a3 shows that gi > 0 for every 2 < ti < 
7,  whereas gi decreases monotonically and changes its sign in this range. It is found 
that the boundary condition (41a) can be satisfied only when d, = 0 and gi = 0 at 
a = fa3. Then: 

6 = 4.2218878104 ..., a = @ = 0.603127 ... < 3. (42) 

This same power of the second-order unsymmetric similarity term was also 
calculated numerically by Keyfitz et al. (1978). The constant d, remains un- 
determined. Equations (lob), (22)) (37)) (38) and (42) show that the next higher-order 
term of the transonic flow field about the parabolic nose is an unsymmetric 
circulation function around the leading edge of the airfoil: 

(Y+ 1) A P  = g u i a f p ( f )  

= dzy”o~6031(sina)0~3969F(1.2036, -0.0370.3. 7 2 ,  sin2 a)F-0.6031(g, -&;$; sin2&), 

where d, is a circulation parameter that  can be determined only from the complete 
solution of the small-disturbance problem described by (7).  It is clear that 
q51p( - g ,  -a) = -&,(g, a) for any (8, a). The higher-order terms of the velocity 
perturbations are 

(43) 

where S is given by (22b). Since both % and g2 are antisymmetric functions of a, and 
therefore %’ and gi are symmetric functions of a, it is clear that wp( -9, - a) 
= -top(@, a) and vp( -9, -a) = v ( *, a), as a circulation function should change. The 
variation of the function (fp) with ( c / c i )  is described in figure 3 ( 6 ) .  It is a 
monotonically increasing function ; as [-+ - 00 then fp + 0 like ( - [ ) - ‘ I 6 ,  for 6 < 0 it 
has relatively small values, and as (+ 00 then f p  increases like pi6. 

PY. 

From (19) and (44), as g+Of and x > 0 

WP - - 2 x  , (45) - + d 2  CX(6/6)-1 = +d C -0.2964 

where 

On the other hand, as g- .  Ok and x < 0 then [+ - 00 and a+ 0. Then, w p  = 0 and 

C = $(2)6/18 (&)1-$6 C;d/42(Cos a3)-($+6/18) ( -9’);8i/”2(a3) > 0. 

w,(z,O+) - d,D( -z)(6-7)/6 = d,D( --x)-0.4630, 

D = [(g): (;)A c:]l-(w > 0. 

(46) 

where 

To summarize, the transonic small-disturbance velocity potential can be 
approximated in the nose region by 

(y+l)q$ - ~f(()+b.””’”’~’,(~)+ ..., 5 = x/& (47) 

where the similarity variable 6 and the functionsf andf, and are given by (19), (21), 
(28), (30), (42), (43). It should be emphasized that the first term represents the basic 
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symmetric flow due to the parabolic nose, and the second term represents the basic 
unsymmetric flow due to circulation. Although the two terms have different powers, 
it  should be noted that these powers are relatively close. Higher-order terms of the 
potential qhl are affected by the combined interaction of the two first basic terms. 
It can be shown that the next term should be of O(ij(28-4)/7 ) = 0(ij4.4438/7). It is also 
clear that the potential q51 contains in the approximation the term x K / ( y + l )  = 
f&K/(y + 1) which is a special solution of the transonic small-disturbance problem. 
The pressure distribution along the nose resulting from the approximation to the 
transonic small-disturbance potential $1, (47) ,  is given by (9), (31 a )  and (44) : 

The first term in (48) describes the change in the average of the upper and lower 
pressures near the leading edge, whereas the second term describes the change in the 
difference between the upper and lower pressures as the leading edge of the airfoil is 
approached. 

In  order to complete the approximation of the solution in the outer region it is 
necessary to approximate the second-order potential $2 near the leading edge of the 
airfoil. The need to do so will be clear later on, when the need for an inner region 
around the nose of the airfoil will be discussed. 

The substitution of (47) in (8a )  and the approximation of q52 near the airfoil nose 
also as a sum of similarity solutions: 

results in dominant terms that give n = 5 and the equation for f1(E) : 

(50) 
2y-  1 

(fc-%62)flc5+ (f55-%.g)f15+%f1 = -[ Csf-W5)"i,f,"] 5 . 

Equation (50) is a forced linear equation, where the left-hand side is the same as in 
(32a) ,  but with a = n = 3. Therefore, (50) can be transformed into an equivalent 
equation for fl in terms of sin a (see Appendix C) : 

jl = q(sin a) @--+(sin a), 
where 

cos2aq"-~sinaq'+~q = 2(g)icq cosfa{[i +:(7-4)1 [@-'sin201+~-sina]-4(y-4)-'}. 
(51 b )  

The homogeneous solution of q is given by (37) with d = 2 :  

(52)  qh = dlF(+, -Q ; +; sin2 a) + d2 sin d($, $; $; sin2 a). 

The particular solution qp is assumed to be given by 

where 
qp = ql(sina) cosia, 
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together with (15) result in the solution for the constant d,: 

(55a) 

(55b) 

3 2 1  s 4 = iTi(daClC1 +%y-i)l 

d4{ cos2 aqg - 8 sin aqi - %2 + 4&2 sin2 a/cosz a} = E .%'/cos2 a, 

and in an equation for the function q2:  

where E = i($)ici(?--y). The forced solution of (556)  is found by assuming that 

where 

q2 = q,(sin a) cosP2 a, 

d,{cos2 a q ~ - ~ s i n a q ~ - ~ q 3 }  = E F ' .  

The substitution of z = sin's and of (A 2 )  result in 

d,{z(l -z)q322+ (g -y z )q3z - ;q3}  = iEF(i,  - ; ; g ; z , .  (57) 

Using the standard power series representation of hypergeometric functions 
(Bateman 1953) : 

where (a)z = a(a+ 1) ... (a+Z- 1) and assuming that 

43 = 22 An 2" 
n=1 

result in, from (57), 
d, = il3, A ,  = 1, 

(59) 

(60) 

Equations (51)-(60) result in the solution of the functionf, in terms of sina: 

f, = 93 $P(+, - ~ ; ~ ; s i n 2 a ) + ~ ~ s i n ~ ( 9 , ~ ; ~ ; s i n 2 a )  i 
+&(i)scf [3(1 +$(y-+))F '  cosia 

111 03 

+ ( ~ - 7 )  cosia sin2 a 1 + C A,,, sin2n a , ( n=l 

where -a3 ,< a < a3. The calculation of the vertical velocity perturbation: 
*-5 

w, = (y+  1)  (bzg = y' + 1 [ffi - %-fiSI 

results, as g+0* and x > 0 (as (++co) or as a+ka3,  in 

(63) 
1 - P l b 3 1 J  10 

(y+ l)$2g(x,o') = --x 8 ( ; i ) ~ ( 2 ) l ~ c q P c O s ~ a 3 ( - ~ ' ) ~ ~ q ' ( + a Q ) ,  
Y + 1  

where (19), (49) and (51a) were used. The right-hand side of the boundary condition 
in ( 8 b )  can be approximated as Q + O &  and x+O+ by (19), (23) and (30): 

( y +  1)  (blz(~,~*)Fu,l(~) x + - - - ~ - " ~ ) 6 ( ~ ) " c ~ s i n a , c o s ~ a ~ ( - ~ ' ) ~ ~ .  (64) 
- 1 5 1 5 3 1 7  6 18 

Y S - 1  
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Equations (63) and (64) give 

q’(+a,) = T (%)~sina,cos~a,(-S’),.cf. 

From (51)-(60) and from Rateman (1953, p. 102, equation (20) and (22)), 

p’( f a,) = f g1 sin a3F( j ,  i; c ;  sin2 a)  + c t , ~ ( $ ,  +; t ; sin2 a 3 

+&)a  q sin as 2( 1 +$(y -+)) ( - 9’)a3 
- 1 2 1  6 
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(65) 

- Equations (65) and (66) give 

where 
d, = ZC~, dz = 0, 

(I + 5 A,,, sinan a, 
00 

-(y-y)(i+ c (n+1)A,+,sin2na3-- 
n+1 3 12=1 

Therefore, the leading term of q5z near the leading edge is approximated by 

a, 

+A (i); 3(1 +$(y - 1))  9’ cos:a+ (y- y )  cosia sin2 a 1 + A,+, sinzn a)]}, (68) 

where -a3 < a < a,. Equation (68) shows that in the leading term the second-order 
potential $2 of the transonic flow around the parabolic nose is symmetric about the 
x-axis : &,( -y”, -a)  = ~ $ ~ ( g , a ) .  Higher-order terms of the potential q5z are affected by 
the approximation of (equation (47)). It can be shown that the next term of q52 
should be of O(g”-”/’) = O(@2.2219/7). 

The results can be summarized as follows. From (6), (47) and (68), the potential @ 
in the outer region can be approximated in the leading-edge region as 6+0 and 
Ma, -+ 1 with (x, g ; K , A )  fixed, by the asymptotic expansion 

[ i n-1 

4 
+-[$fi(6) (Y + +O(y”2.2219/7)] +O(E(s))}, (69) 

where the similarity variable 5 = x/j$. The functions f([), f,(C) and fi([) are 
determined by parametric representations in terms of the hodograph similarity 
variable sina where la1 < a, = 80.40878’ (equations (19), (28), (29), (43), (60), (61), 
(67)). Equation (69) shows that in the leading-edge region as both x and g + O ,  the 
velocities in the x- and q-directions become singular, specifically on the airfoil surface 
(as a + & a,). This is the transonic nose singularity. There is also a misordering in the 
approximation (69) in the magnitude of the disturbance for every when both x and 
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y are smaller than Fh2c. Therefore, a resealing in the radial direction only is needed, 
x* = x/S2, y* = x/P, in order to account for the local flow around the airfoil nose, 
where a stagnation point exists. 

4. Inner expansion 
In the inner region, around the parabolic nose, the asymptotic expansion of the 

potential @ is given, in the limit (6+0, M,-+1) where l/H& = I+K$+ ... with 
(x*, y* ; K ,  A )  fixed, in the form 

@(x, Y ;M,,  A 3 4 = ua2$,(x*, Y* 3,, A ) .  (70) 

From the basic system of equations (1)-(5) an inner problem is found for the solution 
of the function $o in the (x*, y*)-plane: 

6oy*y* - (7 + 1 )A,* 6oz*x* = t(r + 1) R z *  $oz*z* + 260,,* 6oz*y* + (Y - 1) $oz* 6ooy*y* 

+3r- 1)  @z* Foy*y* + 2603, $ooy* $oz*y* +t(r+ 1)  Ry* 6oy*y* +&y- 1)  @y* $OZ.Z*’ (72a) 

- h d  
X *p 

$oyb[x*, y* = 2 2h(cx*)Z] +? [ 1 + $ozb[x*, y* = f 2h(cx*);]) = 0, (72b) 

($oz*, 6oy*) + O as x* + - 00. (724 

The problem given in (71) and (72) describes, in the (x*, y*)-plane, a sonic (M,  = 1) 
uniform flow Uex, with density and pressure ( p , , ~ , )  around an infinite parabola 
surface y* = f2h(cx*)i (figure 4). The compressible flow is governed by the full 
potential equation for $o(x*, y*) at M ,  = 1 (written in (72) in a detailed form for the 
next analysis), and by the tangency boundary condition over the parabola surface. 
The far-field behaviour of $o as Ix*l+ 00 or Iy*l+ co has to be specified in order to 
obtain a well-defined problem. The density (p*)  and pressure @*) of the flow in the 
inner region are given by 

P*/Poo = [1 +t(r- 1)  (i-~~,*-~~y*)ll’(y-l), P*/P, = (p*/p,)Y. 

In the far field as 1x*1 or Iy*l are increased, the potential function $o is assumed to 
be a weakly nonlinear function that is composed of a basic function 6oo and a 
correction function A, that is much smaller than 6oo as 1x*I or Iy*l are increased: 

60(X*>Y*) - 60O(”*,Y*)+$Ool(“*,Y*)1 (73) 

where the function $oo is found from 

$ooy*y* - (Y + 1 ) 6000z. $005*Z* = 0, 

($ooZ., $oo,*) - to  as (b*I -+ 00 or Iy*I + 00). 

The solution of (74) is given by 

= y*:f*(E*), c* = x*/y*t, 

where (f;t.-~E*”)f;t.E*-Q~*f~+~f* = 0. 



Transonic flow around an 

y l  
- - 

Pcao.Pm 
U = a , , M , =  1 

airfoil with a parabolic nose 15 

w 
FIGURE 4. Parabolic-nose problem (the inner region). 

Equation (75b)  for f*(t*) is the same as (13b) for f(t;). Also, the boundary 
condition in (74) is equivalent to that for q51h. Therefore, f*(E*) =f(t*), where both 
[* and f are defined parametrically by sin a, as is f(6) : 

,g* = - $($)t ci C O B  &//@, (76)  

andfis given by (29)  and la1 < as = 80.40878". The scale parameter c1 in (76)  is taken 
as the same one that is given by (30), in order to match with the leading term of the 
outer solution. The function $ol is found by the approximation 

(77)  
1 

(y+l)$ol - ?+ - p *z fl(5 * * )I k* = X*/Y*+ 

where 1 < 4. The function f: is given from (72)  and (75)  by 

( i s *  - Q 5 * 2 ) f $ * t *  + [f[*t* + $(2Z - y )  5*] fa* - a( a - 1)f: = 0, (78a)  

when $ < 1 < 3 or by 

(f,*-&*')f$.,*+ (fc*,*-25*)f$*+gf;" = -[ ($ f -$6*f s42+7f f* ]  2 y -  1 (78b) 
5* 

when 1 = 3. 
The boundary condition for & as x* --f co results, from (72)  and (75), in 

( y +  I )  $olu*[x*, y* = f 2h(cx*)f] = o as x* -+ 00 (79a)  
or in 

(y+ I )  $oly*[x*, y* = k 2h(cz*)+] 

- 1  18 
= +- x*-t(~)Mc~sina3cos~a3(-- ')a,  as z*-+ 00. (79b) 

Equation (78a)  for,f:(<*) is equivalent to (32a)  for f,(E) with I instead of a. Therefore, 
in the case 5 < 1 < 4, f;" is given by (31) in the form 

(80) 

where here G = 71, d: and d,* are constants and g,,g, are defined by (37b) .  The 
calculation of the left-hand side of (79)  results as x* + co in an equivalent expression 

Y + 1  

ff = [d,* g,(sin a) +d: g2(sin a)] F-"/7(sin a), 
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to that given on the right-hand side of (40), but with x* instead of x. The boundary 
condition in (79a) can be satisfied if and only if 

(d:g;+d,*g;),=,.a = 0, (81) 

where g;, q; are given by (41 b) .  However, since both gi + 0 and gi + 0 at a = k a3 for 
every a" in the range 2 < 5 < 4, (81) can be satisfied if and only if d: = d,* = 0. 
Therefore, the boundary condition in (79b)  can be satisfied if and only if d = 2, and 
then I = 3 and (78b)  has to be solved. 

Equation (78b)  forfF(c*) is the same as (50) forf,([). Also, the boundary condition 
in ( 7 9 b )  is equivalent to that for $2. Therefore,fT(<*) =fl(t*), wheref, is given by 
(68) in terms of sina. From (70), (71), (75), (76) and (77) the potential @ in the inner 
region can be approximated, as S + O  and M ,  + 1 and as (Ix*1,ly*l) + 00, by the 
asymptotic expansion 

where &* = x*/y*$ and f ,  f, are the same functions as in the outer expansion (69). 

5. Matching 
The matching of the outer and inner asymptotic expansions is carried out with 

the help of an intermediate region where xg = x /q(S) ,  yg = y/q(S) fixed in the limit 
S- t  0, M ,  -+ 1 as well as the parameters ( K , A ) .  The region q(6) is chosen such that 
S2 4 ~(6) 4 1 ,  and as S-tO, r(S)/S2+ 00. Then x = 7(6)x,+O and jj = dy(S) y,+O, 
whereas Ix*l = (q(S)/S2) 1% 1 + co and (y*( = (~(<)/s") (yJ + 00. Also, 5 = x/@ = (.r//S2)$[, 
and [* = x* /y*~  = (7/S2$&,, where l& = x,/y;, so that, in the region q(6) as S-tO, 
6 = [*. The region q(S)  represents a whole-order class of limits between the inner and 
outer and is called the overlap region. For matching, the expansions must read the 
same to a certain order when expressed in the (x,, y,) coordinates. From (69) and (82) 
it is found that : 

outer expansion 

+ #.2219/21 7 4.2219/7 Y 4.2219/7fp ( (;)tg) + (j(,y4.44S8/21 T 4.4438/7$.4438/7))] 

0 

inner expansion 

It is clear that the terms proportional to f and fi match. Terms smaller than 
O(S1s.2219/21) are not matched. By considering these error terms more restrictive 
bounds on r(S) are found for a relative error of (&): 

(84) 82 < 7(S) < < S  (14-(i)/3(i = ,JO.7720 
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The above matching formulates a well-defined boundary-value problem for the 
solution of the inner compressible flow a t  M ,  = 1 around the parabolic nose. From 
(71), (72) ,  (73), (75), (76), (77)  the potential 4Jo(x*,y*) is found by solving the full 
potential equation (written in its conservation form for the numerical solution) : 

V*-([l ++(?I- 1) (1  -d~z*-d~y*)]l’(r-l)V* do> = 0, (85 u) 

where V* = (a/ax*,a/ay*), and is governed by the satisfaction of the tangency 
boundary condition over the parabola surface y* = f 2h &(x* + h2c)$ : 

h ci 
(x* + h2c); 

q50y*[x*, y* = k 2 h d  (x* + h2c);] T q30s*[x*, y* = k 2h &(x* + h2c):] = 0. 

(856) 

The parabola nose was shifted to the point x* = - hZc for the numerical purposes, and 
by the far-field expansion as Ix*l+ 00 or Iy*J + co : 

In  (85c) [*,fand fl are defined parametrically by sinol, where (a1 < a3 = 80.40878’, 
and are given by (28) ,  (29), (30), (61) and (76). Since the far-field approximation is 
also symmetric about the x-axis, as is the boundary condition, the solution to (85) 
for d,, is symmetric about the x-axis, $o(x*, -y*) = 4Jo(x*,y*). 

6. Numerical solution of the inner flow 
The boundary value problem formulated in (85) is solved numerically to calculate 

the flow around the airfoil parabolic nose, and specifically the pressure distribution 
on the nose surface. By a transformation to parabolic coordinates : 

x* = I(” 2 p -7% y* = jq, (86) 

(85) becomes simpler for numerical calculation : 

with the tangency boundary condition along the plane 7 = 4 2 h d  

dOii(ji, 7 = 4 2 h d )  = 0, (87b) 

and the far-field approximation given by (85c) that can be calculated a t  any point 
(p,@ using (86). The problem can be rescaled by (hc i )  so that the plane ?j = 42hcf  
occurs at  1;1 = 4 2 .  Let, 

Then (87)  becomes 
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j =  N+2 

j = N + 1  

j +  1 

i 
j -  1 

j =  3 

j =  2 

. j  = 1 

FIGURE 5. Finite difference scheme. 

Also, let X = x*/h2c = &2-y2), Y = y*/h2c = pq,  then E= (X+ i)/fi = c*/(h2c)l. 
From (29), (30) and (76) ,  

, (88d)  
14sin2 d(Q, -4;;; sin2 a) + 9 cos2d'(Q, -+;+; sin2a) 

X ~ $ ( g ,  -1 * 3 1 sin2 a) 
2 , 2 ,  

where la1 < 01% = 80.4087792226O. The far-field approximation is given then by 

Y q  + O( fi). $-X+- 
(Y + 1) 

1 

Since 4 is symmetric about the x-axis the problem can be solved in the half-plane 
(p 2 0, 7 2 4 2 )  only, by using the symmetry boundary condition along the y-axis: 

q&(O,V 2 1/21 = 0. (88.f) 

A uniform finite difference mesh (Ap,Ay) is constructed in the (p 2 0, 7 2 4 2 ) -  
plane (figure 5 ) )  with points labelled by (i,j), where I < i < M + 2  and 1 <j < N + 2 .  
The line j = 2 is the line 7 = 4 2 ,  the line j = N +  1 is 7 = yT, the line i = 2 is p = 0, 
and the line i =M+1 is ,u =pT,  where p, and yT are the end values of the 
computational domain. The lines i = M+ 2 and j = N +  2 are added to  represent the 
far-field approximation, and the lines i = 1 and j = 1 for satisfying the boundary 
conditions along 7 = 4 2  and p = 0. Equation (88a)  can be expressed in a 
conservative flux form for a box centred on a mesh point at (i,j) as in figure 5.  Thus, 

= 0. (89) 
(P*$,) ( i+ i , j ) - (P*$,)  (i-kj) +(P*#,) ( i J + 4 ) -  (P*4,) (i>j-i) 

AP AV 
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Since only subsonic speeds are expected in the solution, the various derivatives are 
approximated by centred finite difference expressions : 

$?)W,j) = ~($(i*l , j+l)+$(i , j+l)-$( i f l , j - l ) -$( i , j - l ) ) ,  I 

I 
2 4  

2 4 ,  

1 $/$>jki) = - ($(i+ l , j* 1 )  + $(i+ 1 , j )  -$(i-  l ,j* 1)-$( i -  l,j)), 

An iterative point over-relaxation algorithm is used where for an iteration number 
n:  

and 

The tangency boundary condition (886)  is described with the aid of the linej = 1 by 

$(i, 1)  = $(i,  3) for every 2 < i < M+ 1. (96a) 
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FIGURE 6. (a) The pressure distribution along the parabola (cf) and a comparison with the leading 
term of the pressure distribution from the transonic small-disturbance theory. ( b )  The distribution 
of the density ratio p*/pm and the axial speed &* along the parabola. 

The symmetry condition ( S S f )  is described with the aid of the line i = 1 by 

$ ( 1 , j )  = $(3,j) forevery 2 < j  <N+1.  (96b) 

The far-field approximation (88c, d ,  e )  is fixed along the lines i = M+ 2 and j = 
N +  2. Now, starting with an initial guess for the distribution of the potential $ in the 
computational domain, for example by using the far-field approximation also for the 
near-field points, the potential $ at any point ( i , j )  in the computational domain 
( 2  < 1; < N +  1,2 <j < N +  1) can be calculated iteratively using (94). The iterations 
are repeated until the maximal error is less than a certain small value : max < E .  

Then the flow field around the parabola is calculated and the pressure distribution 
(p*) over the parabolic nose is found by the equation 

The numerical solution of the sonic compressible flow around the parabola is 
determined by the parameters,uT, rjT,M, N ,  0 and E .  The end values ofpT = 40, r j T  = 
40+l/2 were used to apply the far-field approximation for 4. With these values, 
the approximation in (88e) remains valid, with a small error. The optimal over- 
relaxation parameter was found to be SZ - 1.2 and when the criterion for convergence 
e = 0.003 was used, the changes in the pressure distribution over the parabola were 
less than 0.001 with more iterations. The solution tends to converge as the mesh is 
refined, and when M = N = 40 are used the potential function is found within 0.001 
of the converged solution (found for the case M = N = 80). 

The numerical solutions for the pressure distribution over the parabola surface are 
presented in figure 6(a).  The pressure coefficient c; is symmetric for the upper and 
lower parts of the parabola. It starts from a stagnation point value at the leading 
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edge of the parabola, and decreases monotonically to zero as x is increased. Also 
shown in figure 7 is t he  leading term of the pressure distribution resulting from the 
small-disturbance theory (48). It is evident that  near the nose the small-disturbance 
singular approximation differs from the parabola solution, and only when the 
distance from the nose is increased do the two solutions tend to match. 

7. A uniformly valid solution 
A uniformly valid solution for the potential Q, can be constructed from the outer 

transonic small-disturbance theory for and i j z  and the parabola inner solution for 
#o, by adding the two together and subtracting the common part in the intermediate 
region where the two solutions match. The composite solution in the limit as S-tO 
and M ,  + 1 and with (K,  A )  fixed is given by 

@( x, y ; M ,  , A ,  6) - U{ x + x, g ; K ,  A )  + &b2 (x, g ; K ,  A ) 

where from (83), 

The intermediate region ~(6) must be taken according to (84). The substitution of 
the composite solution (98) in the isentropic relations ( 5 )  results in a uniformly valid 
pressure distribution over the entire airfoil that  is obtained in the limit as 6 - t O  and 
M ,  --f 1 with ( K , A )  fixed. The leading terms show that 

where c:(x*,h), p*/pm and i joz. are calculated from the numerical solution of the 
parabola problem (inner problem) and are shown in figures 6(a ,  b)  as functions of the 
distance along the nose. cp,,,(x; S,K, A )  is the outer pressure coefficient on the upper 
and lower surfaces of the airfoil, (9), and can be approximated by (48) as x+O or be 
calculated by a numerical solution of (7) (Murman & Cole 1971). The common part 
is given by 

c,&; S) = 28($coth%,(y+ l)-Wdx-% (101) 
As the leading edge of the airfoil is approached (x+ 0 or 0 < x < S2h2c) the common 

pressure coefficient (cpcp) cancels the x-f singularity of the outer pressure coefficient 
both on the upper and lower surfaces of the airfoil. Also, in this region q50s* is small 
and tends to zero near the stagnation point. Therefore, the dominant term in the 
leading-edge region is the parabola pressure coefficient c:. The pressure distribution 
on the upper and lower surfaces of the airfoil is symmetric near the edge point and 
to the orders discussed the stagnation point is located at the leading edge of the 
airfoil (at the most forward point of the airfoil against the uniform flow), for every 
transonic Mach number (M,  - 1) of the oncoming flow and shape and angle of attack 
of the airfoil. As x is increased beyond the leading-edge region (x > P . 7 7 2 h 2 ~ ) ,  the 
density p* /p ,  and the velocity component #os* tend to 1 (figure 6 b )  and the common 
pressure coefficient (cpcp) cancels the parabola pressure coefficient (c:). Therefore, the 
dominant term outside the leading-edge region is the outer pressure coefficient 
calculated by the transonic small-disturbance theory. I n  the intermediate region 
(cY2h2c < x < P.772h2c) the pressure coefficient changes uniformly from cf to c,,,,, and 
asymmetric deviations from the symmetric inner solution increase and become 
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1.2 IL 
Parabola solution 
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Composite solution 
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FIQURE 7. The pressure distribution in the leading edge region of a Joukowski airfoil at M ,  = 0.8, 
6 =  0.10 and (a) zero incidence, (a) 0 = lo: comparison between several solutions. (FPE: full 
potential-flow equation ; TSD : transonic small-disturbance equations.) 

significant as the distance (2) from the leading edge of the airfoil increases beyond the 
inner region. 

The uniformly valid approximation of (100) was applied to calculate the pressure 
distributions around the leading edge of several airfoils given at various transonic 
Mach numbers and various angles of attack. Two examples of a transonic flow (M, = 
0.8) over a symmetric Joukowski airfoil with a thickness ratio of 8 = 0.1 at angles 
of attack 0 = 0" and lo are shown in figures 7 ( a )  and 7 ( b ) .  Using the numerical small- 
disturbance solution of Keyfitz et al. (1978) or their analytical approximation for this 
solution, and the present solution of the parabola sonic problem described in figures 
6(a)  and 6 (b ) ,  the pressure distributions along the nose of the airfoil were calculated. 
Good agreement is found between the present approximations for the pressure 
distribution and the numerical solutions of the full potential-flow equations of 
Keyfitz et al. (1978, 1979) (using Bauer et al's. 1975 code) over the first 10 YO of the 
chord. It is evident that the solution of the transonic small-disturbance equation 
differs considerably from the full potential-flow solution (this was also indicated by 
Keyfitz et al. 1978), as does the solution of the parabola sonic problem. Only when 
the composite solution is used, which matches between these two solutions, is a good 
correlation found with the numerical solution of the full potential-flow equation. 

It should be pointed out that in order to get a good approximation to the pressure 
distribution around the airfoil's nose by using the present theory, it is necessary to 
use fully converged solutions of the transonic small-disturbance problem. As was 
already described by Keyfitz et al. (1978, 1979), incompletely converged solutions 
can sometimes display an agreement with the full potential-flow solutions, but it 
disappears when the mesh is refined. Such incompletely converged solutions may 
lead to incorrect approximations of the flow around the nose when the present theory 
is used. 
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Figure 8 shows the calculated shift of the stagnation point (X, )  along the nose of 
a NACA0012 airfoil as the Mach number M ,  is increased from zero to one a t  a fixed 
angle of attack 8 = 2". The numerical solutions of the Euler equations were obtained 
using an adaptive procedure (Webster et al. 1992) built on a space-time finite element 
procedure of Hughes, Franca & Hulbert (1989). The small error tolerance 
requirement placed on the adaptive procedure forced highly refined meshes around 
the airfoil's nose, producing highly accurate converged results in that region. It is 
evident that within the bandwidth of the calculations, there is a good agreement 
between the subsonic asymptotic solution of Rusak (1990) and the numerical results 
for 0 < M ,  < 0.6. As M ,  is increased the stagnation point shifts toward the leading 
edge and is located very close to the most forward point of the airfoil when M m  is 
around 1, as is predicted by the present analysis. The very small gap that is found 
between the theoretical and the numerical results can be explained by the basic 
differences between the two solutions. The asymptotic solution was developed in the 
limit 6+ 0 and M ,  + 1 with K and A fixed whereas the numerical calculations were 
carried out with 6 fixed (6 = 0.12) when M ,  -+ 1.  In  order to keep K and A fixed in 
the numerical calculations, as is done in the asymptotic solution, the thickness ratio 
8 and the angle of attack 8 of the airfoil have to be reduced as M ,  approaches 1. 

In  the intermediate region around the critical Mach number the numerical results 
on the change of X, with M ,  match between the subsonic and transonic asymptotic 
solutions (figure 8). This change of X, with M ,  has not yet been analysed 
theoretically. It is expected to describe a uniform change as M ,  is increased from the 
subsonic to the transonic regime. The analysis of this problem seems to be more 
complicated than the present analysis, since it has to match correctly between the 
subsonic case that is dominated by the total circulation around the airfoil and the 
transonic case that is governed by the local shape of the parabolic nose. 

8. Conclusions 
The transonic potential flow about the leading edge of a thin airfoil with a parabolic 

nose can be analysed by matched asymptotic methods. Asymptotic expansions of the 
velocity potential function are constructed at a fixed transonic similarity parameter 
in terms of the airfoil thickness ratio at an outer region around the airfoil and in an 
inner region near the nose. Analytical expressions are given for the first terms of the 
inner and outer asymptotic expansions. A previous solution of Cole & Cook (1986) to 
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the leading-edge singularity resulting from the transonic small-disturbance theory is 
found inconsistent and is corrected. The matching of the inner and outer expansions 
results in a well-defined boundary-value problem in the inner region for the solution 
of a compressible sonic flow around an infinite parabola at zero angle of attack and 
with a symmetric far-field approximation. The numerical solution of the inner flow 
results in the symmetric. pressure and velocity distributions on the parabolic nose. 
From the outer and inner solutions a uniformly valid pressure distribution on the 
entire airfoil surface is derived. In  the leading terms, the flow around the nose is 
symmetric and to the orders discussed the stagnation point is located a t  the leading 
edge for every transonic Mach number of the oncoming flow and shape and small 
angle of attack of the airfoil. The pressure distribution on the upper and lower 
surfaces of the airfoil is symmetric near the edge point, and asymmetric deviations 
increase and become significant only when the distance from the leading edge of the 
airfoil increases beyond the inner region. Numerical solutions of the full potential- 
flow equations and the Euler equations for round-nosed airfoils are in a good 
agreement with the results of the present theory. 
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University. This research was carried out with the support of the Air Force Office of 
Scientific Research under Grant AFOSR 88-0037. 

Appendix A 
The function Y(sina) is given by (14). By introducing z = sin&: 

F(2) = c z ( l - ~ z 2 ) + x F I ( ~ ,  - ; ; $ ; 2 ” .  

Using Bateman (1953, p. 102, equation (22)) 

8’ = d F / d z  = -+,,Z+F(:, -$;t;~’) , .  (A 2) 

On the other hand, from Bateman (1953, p. 103, equation (30)), 

i ( l-~’)F($, -+; -+;~‘)+;(3~~-1)F(j,  -;;+;z’) = :Z’J’($, -;;$;z’). (A 3) 
Since F(2, -;; -a;$) = ( 1 - 2 - i  (Bateman 1953, p. 101, equation (4)), (A l ) ,  (A 2), 
(A 3) result in 

(A 4) 
3 1  
14 z 

= q 3 ( c 2 )  : 

F ( 2 )  = -- [ (iZ2 - 1)  F’ + (1 - z”-”. 

Therefore, when 9 = 0 a t  

Appendix B 

results in 

where ( )’ = d( )/d (sin a) .  

Introducing the function f,([) in a parametric representation in terms of sina 

fpc = &/S> f p g  = (f,” S -f; 5”)/m3 (B 1 )  



Transonic $ow around an airfoil with a parabolic nose 25 

From (19), (21), (22) and (28) 

where S is defined in (22b). Also, by a direct differentiation 

where (15) for 9 is used to get simpler expressions. Equation (33) results from 
substituting (B 1)-(B 5 )  into (32a) ,  rearranging the various terms and using (22). 

Appendix C 
The function fl(f;) is introduced in a parametric representation in terms of sin a. 

Therefore, following the analysis in Appendix B, from (33) for a = 5, the left-hand 
side in (50) becomes 

From (19), (21), (22) and (28): 

(+j-+<f5)2 = ci 9: sin2 a (C 2) 

so the right-hand side of (50) becomes 

RHS = 2 ( ~ ) ~ c ~ 9 - ; c o s ~ a { [ l  +!(y-g)] (9’sin2a+&Fsina)-~(y-!j)9’}, (C 3) 

was also used. Now, following the assumption in (34) for a = 3 where (B 4) for 
results in ( 5 1 ~ ) .  The substitution of (C l ) ,  (C 3) and (51a) in (50) results in (51b). 
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